Efficient Energy Management for Manufacturing

Continuous rise in prices electricity costs in INDIA

Source: PWC report 2011 for Maharashtra state (R-infra charges for LT)

Conclave on Energy Efficiency

How do you answer these...

How do I improve productivity?

How do I reduce cost?

How do I execute projects faster?

Which fault is more frequent?

How do I avoid unplanned shutdowns?

SIEMENS answers the toughest questions with

ENERGY MANAGEMENT SYSTEM

Conclave on Energy Efficiency

WHAT IS ENERGY MANAGEMENT

Energy management

is the foresighted, organizational and systematized **co-ordination** of the procurement, transformation, **distribution and use of energy** for the purpose of meeting requirements, taking **ecological and economic** objectives into consideration.

(Source: VDI 4602 "Energy management - Terms and definitions")

Solutions for a more efficient use of energy

Companies which are more ecological are more economical

Conclave on Energy Efficiency

Industry Norms

Conclave on Energy Efficiency

Energy Management according to DIN EN ISO 50001

Conclave on Energy Efficiency

Energy Circle

Conclave on Energy Efficiency

Identify

Conclave on Energy Efficiency

Why Identification is needed?

You cant manage what you cannot measure

If you don't measure continuously, others will do that for you

This costs you a substantial amount of money!

Conclave on Energy Efficiency

Importance of Power Factor

Power factor is the cosine of the angle between the current phase and the voltage phase at any particular instant of time or it is the ratio of the active power (kW) to the apparent power (kVA). It is a measure of how effectively electrical power is being used.

Phasor sum : kVA = kW + kVAR

kVA = Apparent power or total power supplied by source

kW = Active power or power used to drive the load

kVAR = Reactive power or negative power which is absorbed by Inductive load to set up magnetic field

Conclave on Energy Efficiency

Effect of poor power factor

• Higher energy consumption to fulfill the same load requirement

- Higher line current requirement
- Higher transmission and distribution
 losses
- Higher voltage drop in the system
- Higher size of the cables, generators, transformers and switchgears
- Poor efficiency of the power

transmission

• Loss of incentives / Levy of penalties

3TS Capacitor Duty Contactor

Power factor improvement

3TS Capacitor Duty Contactor

Power factor improvement

Page 14 7/1/2013

Restricted / $\ensuremath{\mathbb C}$ Siemens AG 2013. All Rights Reserved.

3TS Capacitor Duty Contactor

Power factor improvement

1. Individual Compensation

2. Group Compensation

3. Central Compensation

Conclave on Energy Efficiency

Where to install Power Factor correction Equipment-1

SIEMENS

Individual Compensation

- 1. Directly at the Load terminals
- 2. Ex. Motors, Steady loads
- 3. Gives maximum benefit to user
- 4. Not recommended for Drives
- 5. Costly solution

Where to install Power Factor correction Equipment-2

SIEMENS

Group Compensation

- 1. Single compensation for Group of Load
- 2. Ex. Group of Motors
- 3. Gives moderate benefit to user
- 4. Few Capacitor Banks
- 5. Relatively easy to maintain

Where to install Power Factor correction Equipment-3

SIEMENS

Central Compensation

- 1. Directly connected at the incomer
- 2. Improves PF at the metering point
- 3. Line losses continue to prevail down stream
- 4. Least beneficial to user
- 5. Extremely easy to maintain

Linear and Non-linear Loads

A linear load is a load that opposes the applied voltage with constant Impedance resulting in a current waveform that changes in direct proportion to the change in the applied voltage

Example – resistance heating, incandescent lighting, motors

A nonlinear load, on the other hand, is a load that does not oppose the applied voltage with constant impedance. The result is a non-sinusoidal current waveform that does not conform to the waveform of the applied voltage.

Harmonics

What are harmonics ?

Wave form distortion from generated supply waveform (normally pure sine wave)

How they are created ?

Electronic equipments have non linear impedance i.e. it's impedance varies during any time of supply voltage due to switch off-ons on many times or non sine pattern.

Harmonics - problem products

Which products creates Harmonics?

Arc Equipments

Audio & Video Recorders

Battery Chargers

Computers

DC drives

Discharge Lighting (fluorescent, mercury, sodium, etc.)

Electronic Dimmers

Elevators

Facsimiles (FAX)

Rectifiers

Telecommunication Equipment

Uninterrupted Power Supplies (UPS)

Variable Frequency Drives (VFD)

Video Display Units

Welding equipments

Undesirable effects related with Harmonics

- What are the problems ?
 - 1. Blinking of Incandescent Lights -
 - 2. Capacitor Failure -
 - 3. Circuit Breakers / Relays Tripping -
 - 4. Computer Malfunction or Lockup -
 - 5. Conductor Failure -
 - 6. Electronic Equipment Shutting down -
 - 7. Flickering of Fluorescent Lights -
 - 8. Fuses Blowing for No Apparent Reason -

9. Motor Failures (overheating) 10. Neutral Conductor and Terminal Failures –

- 11. Electromagnetic Load Failures -
- 12. Overheating of Metal Enclosures -
- 13. Power Interference on Voice Communication -

14. Transformer Failures -

& Probable causes ?

Transformer Saturation Harmonic Resonance Inductive Heating and Overload Voltage Distortion Inductive Heating Voltage Distortion Transformer Saturation

Inductive Heating and Overload Voltage Drop

Additive Triplen Currents Inductive Heating Inductive Heating

Harmonic Noise Inductive Heating

Conclave on Energy Efficiency

A strong team for every measuring power & Harmonics

Conclave on Energy Efficiency

Conventional Communication System on RS485

Ethermet Modbus TCPIP Ethermet Corverter-Ethermet Com Card

Default Port is RS485 Required Converter Card to Communicate over Ethernet. Ethernet Card can be used 1x per device or 10-31x / device. More variables and no of nodes leads to slower response on PC. Speed Limitations of RS 485 Still a problem even after Ethernet conversion Failure of Converter leads to data loss of all the devices in EMS

Compromise on Speed, Reliability & Performance of EMS System

Conclave on Energy Efficiency

Ethernet

Ethernet

Ethernet is a local-area network architecture developed by Xerox, DEC, and Intel in 1976. It operates using a shared bus or star topology, and supports data transfer rates of 10 Mbps, 100 Mbps, and even 1000 Mbps formats.

Ethernet: 10 Mbps Fast Ethernet : 100 Mbps Gigabit Ethernet : 1 Gbps

TCP/IP

The TCP/IP protocol suite refers to the family of network protocols used by most Ethernet networks, and by the Internet, to connect hosts.

Features

- Very high speed (10Mbit to 100Mbit/s).
- Very long distance, hundreds of feet can be achieved, more with hubs and switches.
- Immune to noise.
- Widely used in industrial automation due to noise Immunity.
- Commonality with other business level networks based on the same networking standards
- within a plant location.

Conclave on Energy Efficiency

SIEMENS Energy Circle: Identify – Overview 980**80** Profibus DP **Industrial Ethernet** 228 228 Water 228 supply **Electricity** LEED 228 Steam Cold water Electricity Gas One (1) system for all energy types **Conclave on Energy Efficiency**

SIEMENS Evaluate 4nergy efficiency consulting Evaluate Identify 2 Realize

Conclave on Energy Efficiency

Basic steps for Power Distribution System design

Design Steps

- Load List
- Load segregation
- Energy Source (Transformer, DG etc.)
- Switchgear Selection
 - ✓ Load Current
- Cable Dimensioning
 - ✓ Current Carrying Capacity
 - ✓ Voltage Drop
- Fault Level Calculation
- Cable Dimensioning
 - ✓ Fault Level
- ≻Switchgear Selection
 - ✓ Fault Level
- Capacitor Bank Sizing

Tender Documents

- Standard Specifications
- Specific Requirements
- Single Line Diagrams
- Cable Schedule
- Bill of Material
- Relay Co-ordination

SIMARIS Design

Enables automatic calculation of electric network parameters & suitable equipment selection

 $^{{\}sf Restricted}\, @$ Siemens AG 2014 All rights reserved.

Economical and safe low-voltage power distribution

SIEMENS

Save up to 5 % energy costs

Planning

Conclave on Energy Efficiency

Economical and safe low-voltage power distribution

Operation

SIEMENS

Measuring + Visualization + Actions Power Manager

Save up to 20 % energy costs

Restricted © Siemens AG 2014 All rights reserved.

Energy Circle: Evaluate – Overview

SENTRON POWER MANAGER Complete Energy Management Software for Industries

Conclave on Energy Efficiency

Evaluate – Power Quality Analysis

Identification of Deviations that could be challenged Optimization potentials,

Benefit

 e. g. domestic
 production of high loads
 Peak loads
 Energy consumption outside of production times
 Create "energy awareness"

Conclave on Energy Efficiency

Energy Circle: Realize – Overview

Conclave on Energy Efficiency

Towards a Worldwide Common Efficiency Standard

In 2008, IEC came up with a new standard - the IEC 60034-30

- to eliminate differences in efficiency standards the world over
- to enable user to compare motor efficiency with a common reference

SIEMENS

Towards a Worldwide Common Efficiency Standard

In 2008, IEC came up with a new standard - the IEC 60034-30

- to eliminate differences in efficiency standards the world over
- to enable user to compare motor efficiency with a common reference

IEC 60034-30 Applicable the World over!

Conclave on Energy Efficiency

IS:12615-2011

Energy Efficient Induction Motors - Three Phase Squirrel Cage (Second Revision)

This new standard recommends that for motors to be classified as Energy Efficient, these must meet minimum efficiency class as *IE2*. The standard also stipulates that by January 2014 the minimum class should be *IE3*.

Keeping in view the threats to the exports to India and also complimenting the role of various Government initiatives like National Mission for Energy Efficiency, it is intended that the efficiency levels of the motors covered in this standard need to be upgraded in a phased manner as per the below schedule:

- a) The second revision shall be implemented by 30 June 2011.
- b) The efficiency performance values of the motors under the scope shall be IE2. However, when these motors are used with variable frequency drives, they shall conform to IE1 values of efficiency.
- c) The efficiency performance values of the motors under the scope shall be IE3 and shall be effective by 31 January 2014. However, when these motors are used with variable frequency drives, they shall conform to IE2 values of efficiency.

Conclave on Energy Efficiency

The Efficiency Classes as per IS:12615-2011

Conclave on Energy Efficiency

The New IS:12615-2011

IS 12615 : 2011

IS:12615-2011

Energy Efficient Induction Motors -Three Phase Squirrel Cage (Second Revision)

This revised standard based on IEC 60034-30 classifies efficiency into three classes:

- **IE1 Standard Efficiency**
- *IE2* High Efficiency
- **IE3 Premium Efficiency**

This revised Standard defines nominal efficiency values for the 3 classes for: 0.37 - 375 kW in 2P, 4P and 6P

भारतीय मानक उर्जा दक्ष प्रेरण मोटरें — तीन फेज़ी स्कियेरल केज (दूसरा पुनरीक्षण) Indian Standard ENERGY EFFICIENT INDUCTION MOTORS— THREE PHASE SQUIRREL CAGE (Second Revision)

> © BIS 2011 BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

August 2011

Price Group 4

How does it benefit to use IE3 motors?

It benefits to use IE3 motors because even when one does a conservative comparison w.r.t. IE2 motors....

Motor output	Price of an IE2	IE3 is costlier	IE2 officianay	IE2 officionov	IE3 is higher	Annual Energy	Annual Savings in	Price Difference is
	Motor	by	TE2 efficiency	IES efficiency	by	Savings	Energy Cost	recovered in
kW	Ň	×	%	%	% points	kWH	``	months
0.37	4,475	673	70.1	73	2.9	153.99	847	9.54
0.55	5,092	765	75.1	78	2.9	199.97	1,100	8.35
0.75	5,128	769	79.6	82.5	2.9	243.23	1,338	6.90
1.1	6,034	907	81.4	84.1	2.7	318.62	1,752	6.21
1.5	6,592	991	82.8	85.3	2.5	389.93	2,145	5.55
2.2	8,719	1,309	84.3	86.7	2.4	530.54	2,918	5.38
3.7	11,151	1,674	86.3	88.4	2.1	747.98	4,114	4.88
5.5	15,367	2,307	87.7	89.6	1.9	976.66	5,372	5.15
7.5	17,896	2,685	88.7	90.4	1.7	1,167.75	6,423	5.02
11	30,130	6,025	89.8	91.4	1.6	1,574.79	8,661	8.35
15	37,447	7,490	90.6	92.1	1.5	1,980.28	10,892	8.25
18.5	48,571	9,715	91.2	92.6	1.4	2,252.30	12,388	9.41
22	51,284	7,693	91.6	93	1.4	2,655.25	14,604	6.32
30	69,239	10,386	92.3	93.6	1.3	3,315.28	18,234	6.84

The incremental investment is recovered within 6 - 8 months.

Comparison between IE2 and IE3 efficiency values as per IS:12615-2011.

Note: kWH saving and Energy Costs calculated considering that the motor operates continuously at 85% load for 24 hours per day, 360 days per year, at a power tariff of `5.5 per kWH.

Conclave on Energy Efficiency

How does it benefit to use IE3 motors?

It benefits to use *IE3* motors instead of *IE2* motors, even when the apparent efficiency difference is negligible.

Motor output	Price of an IE2	IE3 is costlier	IE2 officionay	IE2 officionov	IE3 is higher	Annual Energy	Annual Savings in	Price Difference is
	Motor by			TES eniciency	by	Savings	Energy Cost	recovered in
kW	Ň	`	%	%	% points	kWH	`	months
37	89,777	13,467	92.7	93.9	1.2	3,746.02	20,603	7.84
45	106,065	15,910	93.1	94.2	1.1	4,145.12	22,798	8.37
55	150,994	15,100	93.5	94.6	1.1	5,023.26	27,628	6.56
75	184,693	18,470	94	95	1	6,167.97	33,924	6.53
90	214,276	21,428	94.2	95.2	1	7,370.34	40,537	6.34
110	259,421	25,942	94.5	95.4	0.9	8,064.69	44,356	7.02
132	305,488	30,549	94.7	95.6	0.9	9,636.99	53,003	6.92
160	357,423	35,742	94.9	95.8	0.9	11,632.24	63,977	6.70
200	433,911	43,391	95.1	96	0.9	14,479.50	79,637	6.54
250	478,340	47,834	95.1	96	0.9	18,099.37	99,547	5.77
315	548,752	54,875	95.1	96	0.9	22,805.21	125,429	5.25

Average kWH saving of frame size 315 (110, 132, 160 and 200kW) is 10,953 kWh and considering that the amount of motors produced last year (IEEMA Statistics) in this frame being around 9,284, it translates into a National Saving Potential of around 11akh (1,01,691) MWh.

Comparison between IE2 and IE3 efficiency values as per IS:12615-2011.

Note: kWH saving and Energy Costs calculated considering that the motor operates continuously at 85% load for 24 hours per day, 360 days per year, at a power tariff of `5.5 per kWH.

Conclave on Energy Efficiency

The SIEMENS offering for IE efficiency class motors

Conclave on Energy Efficiency

Energy Savings from ACBs & Fuses

Energy Saving

- Lowest Energy Consumption as per IS 13947
- 85% less thermal stresses
- 53% less dynamic stresses

Conclave on Energy Efficiency

Energy Saving - Electronic Coil

Energy Saving – Microprocessor Based Relay

Product Characteristics Current rating 0.1 to 40 A Adjustable tripping CLASS 5 to 30 Large setting ranges of 1:4 Low power loss

Up to 98 % less power consumption than thermal solutions

Conclave on Energy Efficiency

Making hydraulic systems smarter and more efficient

Drive Solutions for Hydraulic Systems

Unrestricted / © Siemens AG 2014. All Rights Reserved.

Sinanics

Life-cycle costs analysis of a system: Energy costs are reduced

- The life cycle costs of a system are much larger than the initial cost
- The ROI is usually reached before 2 years
- The drive emulates the functionality of valves and by-passes (and can replace them**)

*Energy saving depends on application

*Some valves cannot be replaced due to safety reasons

Unrestricted / \odot Siemens AG 2014. All Rights Reserved.

Page 48

Drive technology meets hydraulics: A new generation of hydraulic systems

SIEMENS

Customer can choose a suitable pump provider (Voith, Bosch-Rexroth, Eckerle, Bucher, etc.)
SIEMENS can suggest the correct pump size

Unrestricted / \odot Siemens AG 2014. All Rights Reserved.

*Only needed if construction type is not IM B35 **Norm-asynchronous motors require forced ventilation

Page 49

Comparison of technologies: Possibilities for pressure and flow rate control

	System with valves	System with variable displacement pump	System with drive
Actuating element	Opening of flow control valveOpening of pressure valve	 Displacement angle of pump 	Motor speed
Set point change during operation	 No / Yes* (auxiliary hydraulic system required) 	 No / Yes* (auxiliary hydraulic system required) 	• Yes
Motor type (efficiency)	 Norm-asynchronous (+) 	 Norm-asynchronous (+) 	 Norm-asynchronous (+) Servo-asynchronous (+++) Synchronous (++++) Tequirement
Main energy losses	 Flow control valve Pressure valve Directional valve Recirculation of oil Continuous motor rotation *Auxiliary oil 	 Directional valve Continuous motor rotation *Auxiliary oil 	• Directional valve
Energy evaluation	\mathfrak{S}		\odot

Unrestricted / © Siemens AG 2014. All Rights Reserved.

Abstract of our portfolio: The optimal drive and motor for your system

Drive controlled hydraulic pumps

- Movement of hydraulic actuators (cylinders or hydro-motors)
- Single or multiple hydraulic actuators per hydraulic system
- Different price optimized combinations for different dynamic, efficiency and precision

Configuration	А	В	С	D
Drives	 V20 G120 (CU240) G120 (CU250) 	• G120 (CU250)	S120 (CU310)S120 (CU320)	S120 (CU310)S120 (CU320)
Motors	1LE1 (forced air ventilated)	• 1PH8 (asynchronous)	• 1PH8 (asynchronous)	1FK71FT71PH8 (synchronous)
Application examples	General pressure sourcesBending machines	Elevators	Sand casting machinesRecycling presses	 Metal presses Injection molding machines

Medium dynamic	High dynamic	Very high dynamic

Unrestricted / © Siemens AG 2014. All Rights Reserved.

Ready-to-use application: DCC-Application

SIEMENS

Task

The standard application, servo pump for SINAMICS based on DCC, was developed with the objective of addressing a wide range of known servo pump applications with one single application configuration. As a result of the openness of the application, it is possible to configure or modify the application. The application can be used with different versions of the SINAMICS S120 and S150 series.

With the appropriate devices, servo pump for SINAMICS based on DCC, allows the variable-speed operation of an internal gear pump.

This document provides guidelines to optimize servo pumps with the corresponding devices. Depending from your machine, this application can be used in the most different branches.

- For the free application please contact SIEMENS
- Click here for ordering information

Unrestricted / © Siemens AG 2014. All Rights Reserved.

Application – Description

Application, servo pump with DCC

SINAMICS \$120

Application description May 2013

Arguments for servo pumps: Much more than just energy efficiency

SIEMENS

• The initial investment is easily compensated by the energy saving and further optimization possibilities

Unrestricted / © Siemens AG 2014. All Rights Reserved.

SINAMICS Technology for hydraulic pumps: A powerful combination

- Advantages of electric drives and hydraulics are brought together
 - ✓ High dynamic, high efficiency and high power density
- Combination of SINAMICS drive, SIMOTICS motor and pump
 - ✓ Wide portfolio to meet your needs
- Integrated in software tools Starter and SIZER
 - Easy configuration and selection of components
 - ✓ Commissioning as any SINAMICS drive
- Ready-to-use control force, flow rate and position controllers
 - The control algorithms are modular and can be adapted
- · Large range of pressures and flow rates possible
 - ✓ Typical pressure range: 0...330 [bar]
 - ✓ Typical flow rate range: 0...600 [L/min]
- New possibilities to optimize machines are opened
 - ✓ Less or smaller components

Unrestricted / $\ensuremath{\textcircled{O}}$ Siemens AG 2014. All Rights Reserved.

Retrofit of a plastic molding machine: Reference : 60 Ton / Single Pump

Retrofit of a plastic molding machine:

- Before: valve controlled system
- Afterwards: drive controlled system

The power was reduced from 15,18 [kW] to 5,39 [kW]

Using the assumptions:

 Effective time = 6000 [hour/year] (=24 [hour/day] * 250 [day/year])

Power [kW]

15

This results into:

- A reduction of the energy consumption of 64%
- A ROI before two years

20

15

10

5

0

Unrestricted / © Siemens AG 2014. All Rights Reserved.

5

SIEMENS

Siemens scope

1. Help propose correct solution Efficiency - Environment 2. Conduct Site Survey **Implement** 3. Submit Techno-Commercial offer

Conclave on Energy Efficiency

Why SIEMENS.....??

Siemens Ltd. is a Sustainable Plus Platinum Company in the Cll Sustainability Rating

Siemens Ltd. has been ranked Number 1 in the Capital Goods Sector (as per BSE classification) and graded as a Sustainable Plus Platinum Company as part of the Confederation of Indian Industry's Sustainability Rating.

Dec 28, 2012

Conclave on Energy Efficiency

Thank You